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Abstract

This study presents a new methodology for forecasting volatility. It relies on a
weighted mean of short and long estimates of variance, based on a Moving Average
framework. The quality of the predictions obtained with the proposed formula was
checked with both simulated and real data. When applied to the analysis of sim-
ulated data, the new formula provides the least reliable forecast when a Random
Walk is used as Data Generating Process (DGP) and the forecast variance is a sim-
ple Moving Average or when the DGP belongs to the ARCH model family and the
associated forecast formula is used. However, compared to existing approaches, the
new methodology allows for the most reliable forecast on 5-day and 20-day horizons,
when it is applied to Index, Fixed Income and Foreign Exchange data series.

Key words: Volatility forecasting, GARCH models, Evaluating forecasts,
Non-parametric methods, Exponential smoothing

1 Introduction

Since the introduction of the CAPM and Black-Scholes models, volatility has
played a crucial role in the definition of derivative price. However, volatility
is both a random and an unobserved variable, that must be inferred from
data. Several models have been proposed to estimate volatility. They typi-
cally use either historical data (historical volatility) or option market prices
(implied volatility). A complete review of volatility models used for forecast-
ing can be found in Poon and Granger (2003). Many subsequent papers have
attempted to improve the forecasting of volatility and have also introduced
the practice of checking the quality of the forecast. The work of Hansen and
Lunde (2005) and McMillan and Speight (2004) confirms the superiority of
the ARCH model over all other models as far as daily forecasts are concerned.
The quality of their predictions is due to using cumulative squared returns
from intra-day data (realized volatility) rather than daily squared returns in
comparison with the variance forecast. This new method of measuring volatil-
ity was recommended by Andersen and Bollerslev (1998). In order to reduce
the high persistence typical of the GARCH model, Marcucci (2005) introduces
a new regime-switching GARCH model, that gives optimal results for 1-day
forecasts. Koopman et al. (2005) compare historical and implied volatility on
the S&P100 stock index. Their results show that historical volatility allows
for better results on a 1-day horizon and that the best performing model is an
ARFIMA model. Gonzalez-Rivera et al. (2004) instead, introduce four differ-
ent loss functions (two from the statistical world and two from the economic
world) to evaluate the quality of forecasting. Their results seem contradictory
at first. However, the four measures used are very different, and it is very
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difficult to understand the role played by volatility in each of the measures.
This work deals with the Moving Average model. The best-known model is
Taylor’s Exponential Weighting Moving Average (EWMA) Taylor (1986). Tay-
lor proved that the EWMA model could produce superior forecast predictions
using a short (10 days) time horizon, because it requires fewer parameters to be
estimated and it is the most sensitive to changes. Akgiray (1989), using differ-
ent series and a longer time horizon (20 days), showed that the GARCH(1,1)
model could produce better predictions than the EWMA model. Many au-
thors agree that the EWMA model is the best available model for forecast
(Tse, 1991; Tse and Tung, 1992; Boudoukh et al., 1997; Walsh and Tsou,
1998). The EWMA model became widely known when RiskMetrics (1996) in-
troduced it in their important work on market risk measure. A variant of the
EWMA model was proposed by Taylor (2004), where, using a logistic func-
tion, the weight depends on the past returns.
In this work the results of a new forecasting method based on a Moving Av-
erage model formulation are presented. Our method is based on a weighted
mean of a short and a long estimate of historical variance. The short estimate
is based on an EWMA model, while the long estimate is based on an MA
model. The method performs well regardless of the data generation processes
used, and it obtains better results on a short horizon (within 1 month) than
classical models (EWMA, GARCH(1,1)) when tested on market index, foreign
exchange and fixed income series. Additionally, our methodology is very easy
to implement.
The paper is organized as follows. Section 2 is devoted to introducing four
classical volatility forecasting models that will be used as benchmarks. The
new proposed methodology is presented in section 3. The procedure used to
test volatility forecasting is explained in section 4. The main results from sim-
ulated and real data are shown in sections 5 and 6, respectively. In section 7,
conclusions are drawn.

1.1 Notation

Let pt (t = 1, . . . , T ) be an asset price defined on (Ω, Ft, P), where Ft is
the natural filtration associated with pt. Let rt = ln(pt) − ln(pt−1) be the
continuously compounded return on the asset over the period t − 1 to t. We
break down rt = µt+

√
htεt, where µt = E[rt|Ft−1] = Et−1[rt] is the conditional

mean, ht = E[(rt−µt)
2|Ft−1] = Et−1[(rt−µt)

2] is the conditional variance and
εt is a stochastic process defined on the same Ft. We indicate the unconditional
mean with µ = E[rt] and the unconditional variance with σ2 = E[(rt − µ)2].
In this paper we assume µ = µt = 0.
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2 Volatility models

2.1 GARCH(1,1)

The GARCH(1,1) model was introduced by Bollerslev (1986). The conditional
variance is defined as ht+1 = α0 + α1r

2
t + β1ht, where α0, α1 and β1 are posi-

tive. To satisfy the hypotheses of stationarity, it is sufficient that α1 + β1 < 1.
The innovation terms, εt, are independent and identically distributed with null
mean and unitary variance.

The variance forecasting at τ steps is given recursively and can be expressed
in closed form as

ht+τ = σ2 + (α1 + β1)
τ−1

(
ht − σ2

)
(1)

where
σ2 =

α0

1− α1 − β1

. (2)

It can be observed that for high values of τ , i.e. for long horizon forecasts, the
conditional variance is equal to the unconditional variance of the model.
We define the aggregated variance forecasting at τ steps as ht+1:t+τ =

∑τ
i=1 ht+i =

τσ2 + (1−α1−β1)τ

1−(α1+β1)
(ht − σ2)

2.2 GJR-GARCH(1,1,1)

The GJR-GARCH(1,1,1) was introduced by Glosten et al. (1993) because the
conditional variance shows some non-symmetric features such as a leverage
effect. The conditional specification is ht+1 = α0 + (α1 + γ11rt>0) r2

t + β1ht,
where α0, α1, β1 and γ1 are positive. To satisfy the hypotheses of stationarity,
it is sufficient that α1 + γ1/2 + β1 < 1. The innovation terms, εt, follow the
same condition as in the GARCH(1,1) model.

The variance forecasting at τ steps is given recursively and can be expressed in

closed form as ht+τ = σ2+
(
α1 + γ1

2
+ β1

)τ−1
(ht − σ2) where σ2 = α0

1−α1−
γ1
2
−β1

.

2.3 Moving Average

The Moving Average (MA) model is a non-parametric model where the vari-
ance at time t is obtained from equally weighted historical observations, i.e. ht =

4



1
p

∑p−1
j=0 r2

t−j, where p is the window length. In non-parametric models, the con-
ditional variance at τ steps is simply given by ht+τ = ht and the aggregated
variance forecasting at τ steps as ht+1:t+τ = τht

2.4 Exponential Weighted Moving Average

The Exponential Weighted Moving Average (EWMA) is a moving average of
historical observations where the latest observations carry the highest weight
in the variance estimate,

ht =

∑p−1
j=0 Φjr2

t−j∑p−1
j=0 Φj

Φ ∈ [0, 1].

This approach has two important advantages over the equally weighted model.
Firstly, the conditional variance is more responsive to shocks in the market as
recent data has more weight than data in the distant past. Secondly, following
a shock (a large return), the conditional variance declines exponentially as the
weight of the shock observation falls.
The EWMA model has been identified by RiskMetrics (RiskMetrics, 1996) as
the best forecasting model on both 1-day and 1-month horizons for interest
rates, market indexes and foreign Exchanges rates.
It is has been proved that forecasting conditional variance of a I-GARCH(1,1)
model with β ≈ 1 is quite equivalent to an EWMA with Φ = β1.

3 A Mixed Historical Formula (MHF) for variance forecasting

The proposed formulation originates from two main observations. The first ob-
servation pertains to the variance forecasting of a GARCH(1,1) model (eq. 1).
The variance of a GARCH(1,1) model shows an interesting feature, as it is
a weighted sum of conditional variance ht and an unconditional variance σ2.
Such a definition allows us to reinterpret the variance of a GARCH(1,1) model
as a weighted mean of a short and a long estimated variance. However, the
variance depends strongly on α1 + β1, which one can assume to be close to 1
(I-GARCH effect), thus resulting in a biased estimation of the unconditional
variance and consequently of the variance forecasting.
The second observation stems from the work of Mikosch and Stărică (2004).
They proved that the I-GARCH effect is caused by abrupt changes in the un-
conditional variance. Subsequently, Stărică and Granger (2005) have reported
observing this feature in many financial series. The main issue lies in the fact
that the GARCH(1,1) model requires many points (at least 1000 or 4 years of
daily observation) to reach stable convergence of the algorithm with narrow
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confidence bands. In such a long period, there could be disruption to the un-
conditional variance.
The Mixed Historical Formula model we are proposing uses the forecasting
formula provided by the GARCH(1,1) model, but adopts a Moving Average
approach to estimate short and long variances. As such, it does not need
many points and it is expected not to be affected by abrupt changes in the
unconditional variance. The weights for the short and long variances used in
the GARCH(1,1) model are here functions of a parameter ρ, chosen in a set
[0.87, 0.99]. The forecasting of variance at τ steps then becomes

σ2
t+τ = σ2,long

t

(
ρτ−1 − 1

)
+ ρτ−1σ2,short

t (3)

where σ2,long
t is obtained by a MA model carried out on the last 500 points,

while σ2,short
t is obtained by an EWMA model on the last 70 points with

Φ = 0.97. The mean variance of a period [t + 1, t + τ ] is of great interest to
market applications and it can be expressed as

σ2
t+1:t+τ =

1

τ

τ∑
i=1

[
σ2,long

t

(
ρi−1 − 1

)
+ ρi−1σ2,short

t

]
(4)

One could argue that setting constant values for the parameters is too strong
of assumption. We believe that such a practice is well founded. If series are
not stationary, in-sample estimate of parameters cannot be efficient for fore-
casting, and, in order to estimate parameters, techniques such as regression,
or similar must be used. Such techniques require many points (more than
1000 based on experience with ARCH models) and we would incur the same
difficulty we are trying to avoid. The values chosen for the parameters are
in fact consistent with our assumptions. If a sample of 500 points (two years
of daily observations) is used to estimate σ2,long

t , it should be long enough to
guarantee a correct estimate of mean variance and it should not be affected
by the potential presence of abrupt changes.

The choice of Φ = 0.97 in the EWMA model is based on the work of Risk-
Metrics (1996). They empirically prove that this value is an optimum value
for a one month horizon. The main difference between our work and the work
of RiskMetrics (1996) is that they effectively employ 550 points - because for
further values the weight is close to zero - while we have opted to use only the
last three months of daily observation, i.e. a genuine short variance.
The proposed formula has two benefits: (i) as opposed to the EWMA and MA
models, it produces good predictions on both short and long horizons and (ii)
it does not require any estimation, because it does not belong to the class of
parametric models.
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4 Set-up to compare forecasts

This section describes the methodology used to compare the forecasting per-
formance of the different models described in the previous sections.
Given a sample of length N , we use a subsample composed of first n points
to obtain a variance forecasting on the next τ points. Then we compare this
value with the historical variance obtained on the sub-sample [rn+1 : rn+τ ].
We move ∆ points forward and, using a sub-sample of n points, we repeat the
procedure until the end of the sample. Hence, we obtain a K = N−n−τ

∆
vari-

ance forecasts, which we compare to the historical one. To check the quality of
variance forecasting, we use a Minimum Squared Error (MSE), thus defined

MSE(τ) :=
1

K

K−1∑
k=0

(
r̄2
n+k∆+1:n+k∆+τ − hn+k∆+1:n+k∆+τ

)2
(5)

r̄2
t+1:t+τ :=

τ∑
1=1

r2
t+i (6)

This definition of MSE is preferred to a simpler one

MSE(τ) :=
1

K

K−1∑
k=1

(
r2
n+k∆+τ − hn+k∆+τ

)2

since the latter uses a poor measurement of the historical return variance.
The results are then presented as the ratio MSEmodel 1(τ)/MSEmodel 2(τ). A
ratio greater than unity at horizon τ indicates that the variance forecast of
model 2 is better than variance forecast of model 1.
Given daily data, we have chosen to compare the MHF on two significant
horizons: one week (τ = 5) and one month (τ = 20). As explained by Risk-
Metrics (1996, p.87), the multiple day forecast of MA-type models is based
on a time scale, but “the square root of time rule results from the assumption
that variances are constant”. So, as they conclude: “scaling up volatility esti-
mates prove problematic ... when estimates of volatilities optimized to forecast
changes over a particular horizon are used for another horizon (jumping from
daily to annual forecasts, for example)”.

5 Simulated analysis

We now assess the merit of the proposed modeling approach using simulated
data. If we assume the data generating process (DGP) to be known, we expect
the best forecasting is to be produced by the formula associated to that DGP.
Additionally, for the Mixed Historical Formula to produce acceptable results
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with real data, first it needs to produce satisfactory results with simulated
data. Furthermore, simulations can lead to a better understanding of the role
of ρ.

The DGPs involved in the simulation are GARCH(1,1), GJR-GARCH(1,1,1)
and Random Walk.
Due to the number of different models, choice of parameters and horizon fore-
cast, a large amount of data is produced. We wish to make the data available
to those who have a particular interest in specific subsets. In this article, re-
sults are presented both extracting representative subsets as well as describing
results for the data not shown here.

5.1 ARCH family DGP

We simulate 250 paths, each containing N = 7020 points. We then use the
models for a sub-sample of length n belonging to a subset {500, 1000, 2000},
since we expect the forecast to improve with a longer sub-sample. The rolling
sub-sample is moved forward of ∆ = 10 points. The last τ = 20 points are left
only for out-of-sample forecasting comparison. The number of forecasts K for
each path is 500.
The simulations are performed with different choices of parameter, as shown
in figure 1. We analyze three different regions: a region very close to the border
line of stationarity (I-GARCH region) (region 1); a region with α1 +β1 ≈ 0.97
where the I-GARCH effect is not present, but the persistence of variance is
high (region 2) and a region with α1 + β1 ≈ 0.9 with low persistence (region
3) 1 .
All the results are presented for the GARCH(1,1) model, because the results
for the GJR-GARCH(1,1,1) model are very similar.

For each choice of parameter, we calculate the 5th percentile and the 95th

percentile of the empirical distribution of the ratio MSEGARCH/MSEMHF .
Figure 2 shows the results for the three regions and for two different forecast
horizons with n = 2000 and ρ = 0.95. It is apparent that the range between
the lower and the higher percentile is almost always lower than unity, i.e.
the GARCH(1,1) model obtains lower MSE, as expected. The MHF model
produces poor results when the true DGP is a GARCH(1,1) model without
I-GARCH effect (second and third line in figure 2). Finally, one observes that
it is very rare for the ratio to exceed 1.5. However, as will be shown next, this

1 For GJR-GARCH(1,1,1) model, the three regions, reported in figure 1 right panel
are similar, but instead of α1 + β1, we have α1 + β1 + γ1/2.

8



0.89

0.92

0.95

0.98

1.01

0.84 0.89 0.94 0.99ββββ1111

αααα1111+β+β+β+β1111 Region 1

Region 2

Region 3

0.89

0.92

0.95

0.98

1.01

0.84 0.89 0.94 0.99ββββ1111

αα αα
11 11
+

β
+

β
+

β
+

β
11 11
+

γ
+

γ
+

γ
+

γ 11 11
/2/2 /2/2

Region 1

Region 2

Region 3

Fig. 1. Parameters used in simulations for a GARCH(1,1) model (left panel) and
GJR-GARCH(1,1,1) model (right panel).

Fig. 2. Left column, horizon forecasting 5-day. Right column horizon forecast-
ing 20-day. First row: region 1, i.e. α1 + β1 ≈ 0.999 . Second row: region 2, i.e.
α1 + β1 ≈ 0.97. Third row: region 3, i.e α1 + β1 ≈ 0.9. x-axis is always β1, while
y-axis is always the ratio MSEGARCH/MSEMHF

observation does not hold for real data series.
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Fig. 3. In the left plot, GARCH(1,1) model is estimated on sample of two different
lengths: 500 points in blue and 2000 points in black. In the right panel the Mixed
Historical Formula is estimated, for two different values of ρ: 0.94 in blue and 0.98
in black.

The ratio MSEGARCH/MSEMHF depends on the number of points n used
to estimate the GARCH model as well as on the value of ρ. The former,
when n decreases, causes an increase and an upper shift in the empirical
confidence bands (see left panel in figure 3). The latter introduces a very
different type of behavior. As can be seen in figure 3 (right panel), when
ρ = 0.98 the GARCH(1,1) model’s performance deteriorates its performance
as β1 decreases, and vice versa for ρ = 0.94. In both case, for given values of
β1, the MHF model produces better results than the GARCH(1,1) model. It
seems that a value of ρ that is the best in all cases does not exist. In fact, the
results depend heavily on the parameters chosen for the simulation. We shall
elaborate more on the subject when we present results on real data.

The results do not depend on the loss function used. If we use the ratio of
Mean Absolute Error, instead of the Mean Squared Error, the range of per-
centiles reduces, but the conclusions remain the same.

5.2 Random Walk simulations

We perform simulations in which the price follows a random walk with null
mean. The set-up is similar to the ARCH models, but the number of paths is
greater (5000), since it is computationally less time-expensive.
The results are presented in figure 4. The ratio is always lower than unity, i.e. if
the DGP is a Random Walk, the Moving Average is the best predictor. Also,
the longer the sample, the better the forecast. Actually, when n = 2000, the
confidence bands are always lower than the forecast obtained from n = 500.
Another interesting feature is that, when ρ increases, (i.e the short volatility
assumes a bigger weight in new formula), the Moving Average always produces
better results. This is even more apparent in the case of longer maturity τ (left
panel in figure 4).
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Fig. 4. In the left panel, ratio MSEMA/MSEMHF on horizon forecasting of 5 days.
In the right panel the horizon forecasting is 20 days. Black line, Moving Average is
estimated from a sample of 2000 days. Blue line, Moving Average is estimated from
a sample of 500 days.

6 Real data

We apply the new formula to 75 daily data series: 36 Stock returns (from
the American Market), 10 market indexes (from all the World), 15 American
fixed income rates, 14 American foreign exchange rates. The data is listed in
table 9.
The experimental set-up is analogous to that of the simulated analysis. The
paths are 5000 points long (about twenty years). The benchmark models
(ARCH and MA) are estimated using a rolling window of n = 2000 points
with step 5 days. We assessed the performance of the proposed formula with
ρ belonging to the subset [0.87, 0.99]. We shall now show the results relative
to the Stock series in great detail, while we shall draw the main conclusion for
the remaining three sets.

6.1 Assets data

The proposed formula does not work with asset data, for any choice of ρ. The
results are reported in table 1 for a horizon of 5 days and in table 2 for a
horizon of 20 days. The table entries show the percentage of how many times
the ratio MSEModel/MSEMHF is greater than unity, i.e how many times the
proposed formula produces better results. It is clear that such percentages are
always inferior to 50%.
The seven models chosen are remarkable: in the ARCH model we know that
the larger the set of data in the sample, the better the convergence. But the
larger the data sample, the easier it is to find an I-GARCH effect. We tried
to estimate the performance of the model using two different sample lengths:
1000 points and 2000. Assuming the series is stationary, we can observe that
when the sample is longer, the estimation based on the Moving Average is
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better. However, because the proposed formula relies on a Moving Average of
500 points, we shall consider this case as benchmark.
From the tables, we conclude that the best model for long horizons should be
the Moving Average evaluated using the last 500 points, while nothing con-
clusive can be said for short horizons.

PPPPPPPPPρ
Model garch garch ma ma ewma gjr-garch gjr-garch

1000 2000 500 2000 1000 2000

0.87 36% 39% 17% 19% 100% 31% 47%

0.88 36% 39% 17% 19% 100% 31% 47%

0.89 33% 33% 17% 19% 100% 28% 44%

0.9 33% 33% 17% 19% 100% 28% 44%

0.91 33% 33% 17% 19% 100% 28% 44%

0.92 33% 31% 17% 19% 100% 28% 44%

0.93 33% 31% 17% 19% 94% 28% 42%

0.94 33% 31% 17% 19% 17% 28% 42%

0.95 31% 31% 17% 19% 14% 28% 42%

0.96 31% 31% 17% 19% 8% 28% 42%

0.97 31% 31% 17% 19% 8% 28% 42%

0.98 31% 31% 17% 19% 6% 28% 42%

0.99 31% 31% 14% 17% 0% 28% 42%
Table 1
Percentage of times that MSEModel/MSEMHF is greater than unity for Stocks on
5-day horizon.

6.2 Fixed Income data

Results for Fixed Income data are reported in tables 3 and 4. The proposed
formula gives the best results with respect to all other models, if ρ ≈ 0.88.
Such value of ρ results in weighting the short variance 80% on a 5-day horizon
(see equation 4) and 35% on a 20-day horizon. We observe that there is little
difference if the value ρ = 0.89 as opposed to ρ = 0.87 is used. Any value in
this range results in a good forecast inside the error bands.
During our simulations, we observed that if we use the ARCH models as Data
Generating Process models, the ratio of the 95th percentile is seldom greater
than 1.5. Surprisingly, we find that the percentage of ratio greater than this
value is 60% for a 5-day horizon and 67% for a 20-day horizon FI. This means
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PPPPPPPPPρ
Model garch garch ma ma ewma gjr-garch gjr-garch

1000 2000 500 2000 1000 2000

0.87 50% 61% 22% 22% 100% 47% 61%

0.88 50% 61% 22% 19% 100% 47% 61%

0.89 50% 58% 22% 19% 100% 47% 61%

0.9 50% 56% 17% 19% 100% 44% 61%

0.91 50% 56% 17% 19% 100% 44% 58%

0.92 44% 53% 17% 19% 100% 44% 58%

0.93 44% 50% 17% 19% 100% 44% 56%

0.94 42% 50% 17% 19% 100% 42% 53%

0.95 36% 44% 17% 19% 100% 39% 50%

0.96 31% 39% 17% 19% 100% 39% 50%

0.97 31% 36% 11% 19% 100% 39% 44%

0.98 31% 33% 11% 19% 100% 36% 44%

0.99 31% 33% 8% 17% 8% 33% 44%
Table 2
Percentage of times that MSEModel/MSEMHF is greater than unity for Stocks on
20-day horizon.

that, with high probability, the GARCH(1,1) model and GJR-GARCH(1,1,1)
model are not the true DGP. This conclusion is highly probable, yet not cer-
tain, since not all of the space parameters were mapped to obtain the true
p-Value of a hypothesis test.

PPPPPPPPPρ
Model garch garch ma ma ewma gjr-garch gjr-garch

1000 2000 500 2000 1000 2000

0.87 100% 100% 93% 93% 100% 100% 100%

0.88 100% 100% 93% 93% 100% 100% 100%

0.89 100% 100% 87% 93% 100% 100% 100%

0.9 100% 100% 87% 93% 100% 100% 100%
Table 3
Percentage of times that MSEModel/MSEMHF is greater than unity for Fixed
Income data on 5-day horizon.
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PPPPPPPPPρ
Model garch garch ma ma ewma gjr-garch gjr-garch

1000 2000 500 2000 1000 2000

0.87 100% 100% 93% 93% 100% 100% 100%

0.88 100% 100% 93% 93% 100% 100% 100%

0.89 100% 100% 87% 93% 100% 100% 100%

0.9 100% 100% 87% 93% 100% 100% 100%
Table 4
Percentage of times that MSEModel/MSEMHF is greater than unity for Fixed
Income data on 20-day horizon.

6.3 Foreign Exchange data

The results are reported in tables 5 and 6. We found two different values of ρ
for the short and long horizons. For the short horizon, the value we recommend
is ρ ≈ 0.9, i.e. the short variance is weighted at about 80%. For the longer
horizon, the choice of ρ is ≈ 0.96, i.e. the short variance weights for about
70%. As a consequence, the last 70 days carry more information than the last
two years.
As for Fixed Income data, in Foreign Exchange data, we observe that the
percentage of the ratio being greater than 1.5 is 71% for a 5-day forecast, and
93% for a 20-day forecast.

PPPPPPPPPρ
Model garch garch ma ma ewma gjr-garch gjr-garch

1000 2000 500 2000 1000 2000

0.89 100% 100% 93% 100% 93% 100% 100%

0.9 100% 100% 93% 100% 93% 100% 100%

0.91 100% 100% 93% 100% 93% 100% 100%
Table 5
Percentage of times that MSEModel/MSEMHF is greater than unity for Foreign
Exchange on 5-day horizon.

6.4 Market index data

Results on market index data are reported in tables 7 and 8. Here the ρ value
for the short and the long horizons is always around 0.92. In the case of the
short horizon, this means that the short variance is weighted at 85%, while
for the long horizon only 50%. We observe that, for a 20-day forecast horizon,
the ratio is always bigger than 1.5. This proves that the proposed formula
provides a good quality forecast for market index series.
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PPPPPPPPPρ
Model garch garch ma ma ewma gjr-garch gjr-garch

1000 2000 500 2000 1000 2000

0.94 93% 100% 93% 100% 93% 100% 100%

0.95 93% 100% 93% 100% 93% 100% 100%

0.96 93% 100% 93% 100% 93% 100% 100%

0.97 93% 100% 93% 100% 93% 100% 100%

0.98 93% 100% 93% 100% 93% 100% 100%
Table 6
Percentage of times that MSEModel/MSEMHF is greater than unity for Foreign
Exchange on 20-day horizon.

PPPPPPPPPρ
Model garch garch ma ma ewma gjr-garch gjr-garch

1000 2000 500 2000 1000 2000

0.92 100% 100% 80% 90% 100% 100% 100%

0.93 100% 100% 80% 90% 100% 100% 100%
Table 7
Percentage of times that MSEModel/MSEMHF is greater than unity for market
index data on 5-day horizon.

PPPPPPPPPρ
Model garch garch ma ma ewma gjr-garch gjr-garch

1000 2000 500 2000 1000 2000

0.92 100% 100% 90% 90% 90% 100% 100%
Table 8
Percentage of times that MSEModel/MSEMHF is greater than unity for market
index data on 20-day horizon.

7 Conclusions

In this paper we have presented a new formula to forecast conditional variance
on a short horizon up to 20 days). Its application to real financial data shows
that it produces excellent results in predicting variance for foreign exchange
rates, interest rates and market indexes, while it generates poor results for
stock returns. The models used for benchmarking are the ARCH models and
the Moving Average model. These models have been selected due to them
being both well-known and widely-accepted.
Interestingly, the results do not change if we use a different loss function (Mean
Absolute Error), instead of the Mean Squared Error (MSE). This observation
is relevant, because the MAE is less affected by outliers and we speculate that
our proposed formula produces better results because the DGP is not one of
the already-known parametrics.
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If an economic loss function were to be used and different estimates of volatility
to an hedging strategy were applied, the final pay-offs would not have shown
noticeable differences. The reason lies in the fact that volatility plays a crucial
role in pricing, but pricing functions are concave with respect to volatility. So
the differences in volatility are reduced in price. This point will be the subject
of further research by the author.
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8 Appendixes

Series Type From To Source Codex

Alcoa Inc. As 11-Oct-1985 04-Aug-2005 Yahoo AA

Amer. Electr. Power As 11-Oct-1985 05-Aug-2005 Yahoo AEP

Amr Corp. As 04-Oct-1985 05-Aug-2005 Yahoo AMR

Boeing As 14-Oct-1985 05-Aug-2005 Yahoo BA

Burlington N.S.Fe Corp. As 11-Oct-1985 04-Aug-2005 Yahoo BNI

Citygroup As 14-Oct-1985 05-Aug-2005 Yahoo C

Caterpillar As 14-Oct-1985 05-Aug-2005 Yahoo CAT

CNF As 04-Oct-1985 05-Aug-2005 Yahoo CNF

Centerpoint As 04-Oct-1985 05-Aug-2005 Yahoo CNP

CSX As 14-Oct-1985 05-Aug-2005 Yahoo CSX

Delta Transportation As 04-Oct-1985 05-Aug-2005 Yahoo DAL

Du Pont De Nemours As 14-Oct-1985 05-Aug-2005 Yahoo DD

Walt Disney As 14-Oct-1985 05-Aug-2005 Yahoo DIS

Edison International As 14-Oct-1985 05-Aug-2005 Yahoo EIX

Federal Express As 04-Oct-1985 05-Aug-2005 Yahoo FDX

continues on the next page
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continues from the last page

Series Type From To Source Codex

General Electrics As 11-Oct-1985 04-Aug-2005 Yahoo GE

General Motors As 14-Oct-1985 05-Aug-2005 Yahoo GM

Honeywell As 14-Oct-1985 05-Aug-2005 Yahoo HON

Hewlett Packard As 14-Oct-1985 05-Aug-2005 Yahoo HPQ

Intel Business Mach As 14-Oct-1985 05-Aug-2005 Yahoo IBM

Johnson Johnson As 14-Oct-1985 05-Aug-2005 Yahoo JNJ

JP Morgan As 11-Oct-1985 05-Aug-2005 Yahoo JPM

Coca Cola As 14-Oct-1985 05-Aug-2005 Yahoo KO

Southwest Airlines As 14-Oct-1985 05-Aug-2005 Yahoo LUV

McDonald As 04-Oct-1985 05-Aug-2005 Yahoo MCD

3M Corp As 14-Oct-1985 05-Aug-2005 Yahoo MMM

Merck As 14-Oct-1985 05-Aug-2005 Yahoo MRK

Norfolk Southern As 04-Oct-1985 05-Aug-2005 Yahoo NSC

Procter Gamble As 14-Oct-1985 05-Aug-2005 Yahoo PG

Ryder System As 04-Oct-1985 05-Aug-2005 Yahoo R

Union Pacific As 14-Oct-1985 05-Aug-2005 Yahoo UNP

United Tech. Corp. As 14-Oct-1985 05-Aug-2005 Yahoo UTX

Verizon Communic. As 14-Oct-1985 05-Aug-2005 Yahoo VZ

Wal-Mart Stores As 14-Oct-1985 05-Aug-2005 Yahoo WMT

Exxon-Mobil As 14-Oct-1985 05-Aug-2005 Yahoo XOM

Euro-Dollar - 3 Months FI 03-Jan-1986 22-Jul-2005 Fed. Res. ED3M

Euro-Dollar - 6 Months FI 03-Jan-1986 22-Jul-2005 Fed. Res. ED6M

5-Year Treasury note FI 12-Aug-1985 05-Aug-2005 Yahoo F̂VX

13-week Treasury bill FI 12-Aug-1985 05-Aug-2005 Yahoo ÎRX

Tr. bill secon. mkt -3M FI 25-Jul-1985 22-Jul-2005 Fed. Res. TBSM3M

Tr. bill secon. mkt -6M FI 25-Jul-1985 22-Jul-2005 Fed. Res. TBSM6M

continues on the next page
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continues from the last page

Series Type From To Source Codex

Tr. Constant Mat. -10Y FI 25-Jul-1985 22-Jul-2005 Fed. Res. TCM10Y

Tr. Constant Mat. -1Y FI 25-Jul-1985 22-Jul-2005 Fed. Res. TCM1Y

Tr. Constant Mat. -3Y FI 25-Jul-1985 22-Jul-2005 Fed. Res. TCM3Y

Tr. Constant Mat. -7Y FI 25-Jul-1985 22-Jul-2005 Fed. Res. TCM7Y

Tr. note -10Y FI 15-Aug-1985 05-Aug-2005 Yahoo T̂NX

Tr. bond -30Y FI 13-Aug-1985 05-Aug-2005 Yahoo T̂YX

Cert. of Deposit -3M FI 30-Oct-1975 22-Jul-2005 Fed. Res. CD3M

Cert. of Deposit -6M FI 10-Feb-1969 22-Jul-2005 Fed. Res. CD6M

Federal Funds FI 11-Sep-1985 22-Jul-2005 Fed. Res. FEDFUND

USD/Australia FE 18-Sep-1985 05-Aug-2005 Fed. Res.

USD/Canada FE 18-Sep-1985 05-Aug-2005 Fed. Res.

USD/Denmark FE 18-Sep-1985 05-Aug-2005 Fed. Res.

USD/France FE 02-Feb-1979 31-Dec-1998 Fed. Res.

USD/Germany FE 02-Feb-1979 31-Dec-1998 Fed. Res.

USD/Ireland FE 02-Feb-1979 31-Dec-1998 Fed. Res.

USD/Italy FE 01-Feb-1979 31-Dec-1998 Fed. Res.

USD/Japan FE 18-Sep-1985 05-Aug-2005 Fed. Res.

USD/Norway FE 18-Sep-1985 05-Aug-2005 Fed. Res.

USD/Austria FE 02-Feb-1979 31-Dec-1998 Fed. Res.

USD/Spain FE 01-Feb-1979 31-Dec-1998 Fed. Res.

USD/Sweden FE 18-Sep-1985 05-Aug-2005 Fed. Res.

USD/Switzerland FE 18-Sep-1985 05-Aug-2005 Fed. Res.

USD/United Kingdom FE 18-Sep-1985 05-Aug-2005 Fed. Res.

All Ordinaries Ind 05-Nov-1985 05-Aug-2005 Yahoo AORD

Dow Jones Comp. Ind Ind 11-Oct-1985 05-Aug-2005 Yahoo DJA

Dow Jones Indus. Av. Ind 14-Oct-1985 05-Aug-2005 Yahoo DJI

continues on the next page
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continues from the last page

Series Type From To Source Codex

Dow Jones Transp. Av. Ind 11-Oct-1985 05-Aug-2005 Yahoo DJT

Dow Jones Util. Av. Ind 11-Oct-1985 05-Aug-2005 Yahoo DJU

FTSE 100 Ind 23-Oct-1985 05-Aug-2005 Yahoo FTSE

Standard&Poor 500 Ind 14-Oct-1985 05-Aug-2005 Yahoo GSPC

Nasdaq Ind 14-Oct-1985 05-Aug-2005 Yahoo IXIC

Nikkei Ind 09-Apr-1985 05-Aug-2005 Yahoo N225

Standard&Poor 100 Ind 14-Oct-1985 05-Aug-2005 Yahoo OEX

Major Market Index Ind 08-Oct-1985 05-Aug-2005 Yahoo XMI

Table 9. This table spans several pages. FI: Fixed Income. FE: Foreign Exchange.
Ind: Index. As: Asset. USD: United States Dollar.
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